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1 Introduction

Endpoint detection and response (EDR) software has gained significant popularity
and market share due to its ability to examine system state for signs of malware
and attacker activity well beyond what traditional anti-virus software is capable
of detecting. This deep inspection capability of EDRs has led to an arms race
between EDR vendors and malware developers as the latter wants to evade the
detection of EDRs while still achieving desired goals, such as code injection,
lateral movement, and credential theft. This back and forth occurs in the lowest
levels of hardware and software, including call stack frames, exception handlers,
system calls, and manipulation of native instructions in the address spaces of
processes. Given this reality, EDRs are often limited in how much lower they
can operate to maintain an advantage over malicious code. The success of these
bypasses has led to their use in many recent, high-profile attacks believed to be
conducted by nation-state-backed actors as well as by prolific ransomware groups
[1, 2, 3, 4, 5, 6]. There has also been significant ongoing industry research into
new forms of bypasses, including works presented at recent Black Hat events
[7, 8].

In this paper, we discuss our team’s research effort that led to the development
of new memory forensics techniques for the direct detection of the bypasses that
malware uses to evade EDR’s inspection of process activity. This discussion
includes our research methodology, goals, and motivation, testing environment,
developed capabilities, and insights learned during the project. Memory forensics
tools reconstruct system state without reliance on operating system APIs and
can fully examine this state without interference. Our techniques utilize this
advantage to detect all EDR evasion techniques found in real-world malware as
well as open-source toolkits and research. These capabilities were developed as
new plugins to the open-source Volatility memory analysis framework, version
3, and will be released upon publication of this paper and presentation at
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the conference. Given the threat posed by undetected malware across every
organization, we believe that our research will provide significant value to incident
response handlers, threat hunters, detection engineers, and other technical staff
in defensive roles.

2 Research and Experimental Setup

2.1 Operating Systems and Versions Tested

We sought to develop capabilities that covered the Windows versions most
commonly in use as well as mostly commonly targeted by EDR-evading malware.
A review of operating system versions supported by the major EDR vendors
showed that they generally support Windows 7 through Windows 11, including
their server equivalents, and these versions match what our team generally
encounters during our incident response engagements.

The following table lists the starting and ending versions tested and supported
for each operating system:

Operating System Earliest Version Latest Version
Windows 11 22000.282 26063.1
Windows 10 10563 19045.2546
Windows 7 SP1 Final Release

This extensive range of versions covers Windows 10 starting from build 10563,
released in 2017, to the latest release at the time this paper was written. These
versions also cover all Windows 11 versions released through February 2024,
including the latest insider releases. In total, beyond the specific samples made
for testing during this project, discussed next, we used over 300 Windows memory
samples from our test bed to ensure that we did not trigger false positives across
default Windows installs plus a wide variety of benign and malicious third-party
applications.

2.2 Memory Sample Testbed Creation

To ensure that our developed algorithms and Volatility plugins were accurate,
we created many memory samples infected with malware that used the bypass
techniques discussed throughout this paper. To create stable and valid memory
samples, two methods for acquisition were used. The first was the use of Surge
Collect Pro from Volexity [9]. This allowed us to collect from physical systems
as well as automatically acquire files from disk, such as ntdll.dll, which we used
for testing automation.

The second approach used for acquisition was snapshotting and suspending
the VMware virtual machines that we used for testing. The system state files
(.vmem, .vmss, .vmsn) created when snapshotting and/or suspending a guest
contain a copy of all physical memory as well the metadata needed to perform
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memory analysis. We used virtual machines when testing live malware samples
from the wild and when we wanted to automate collection and analysis testing
over many different Windows versions.

2.3 Analysis Tools and Resources

Completion of this research involved a mix of open-source code analysis as well
as binary analysis of closed-source operating system components and malware
samples. IDA Pro was used for all binary analysis during our research. We also
created a variety of scripts to perform automated static analysis to verify several
of our developed plugins. This automation was performed through Capstone’s
Python bindings [10].

3 Evasion Techniques

3.1 Background

3.1.1 System Calls

A critical method that EDRs use to monitor process activity is monitoring the
set of system calls that are often abused for malicious purposes. System calls
are the boundary between process memory and the kernel (the operating system
in memory), and access to any protected resource, such as another process’
memory, the file system, and the registry, must be requested through a system
call invocation. The kernel can then enforce security policies at the system call
level, and, if access is denied, a process cannot access the requested resource
except via some exploitation technique, such as privilege escalation.

The following figure shows this boundary crossing in action through using
Process Explorer to monitor file access through the CreateFile system call.

Figure 1: Monitoring CreateFile
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Reading in reverse order, the system call trace starts inside of msedge.dll
(Frame 15-16) and then eventually ends up in KERNELBASE.dLL followed by
ntdll.dll. The blue U to start these rows signifies they are occurring in userland,
which means process memory. Starting with Frame 10, the kernel is entered and
we can see that ZwCreateFile in userland eventually reaches NtCreateFile in the
kernel. The Windows convention is that the userland handler of system calls are
named with Zw* whereas the matching Nt* version is the kernel handler.

The following picture shows the CreateFile system call handler inside of
ntdll.dll.

Figure 2: The CreateFile System Call

As described by IDA and is expected, ZwCreateFile and NtCreateFile are the
same function. Understanding the instructions of this function will be essential
to understanding the EDR bypasses discussed later, so we describe them now.
To start, the rcx register is copied into r10. In the Windows calling convention,
rcx is used to store the first parameter to function calls, while r10 is used as the
first parameter to system calls. All other registers maintain their order between
system calls and function calls. Next, 55h is placed into the eax register. This is
the system call entry number, usually referred to as the system service number
(SSN) on Windows. To execute a system call, the SSN of the function must be
known for the particular version of Windows on which the code is executing
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as the numbers change between versions. After this, the system determines if
the syscall instruction can be used or if the older int 2E interface must be used.
Both of these paths lead to the kernel being entered to handle the system call.

3.1.2 EDR System Call Monitoring

To monitor a wide range of activity across the system, EDRs hook system call
handlers inside of monitored processes to gain control when processes make
system calls, including the ability to inspect the parameters of the system call
and deny execution if needed. For example, if a malicious system call is detected,
such as the creation of a thread within a memory region that is both writable
and executable (RWX), the EDR can deny the system call and prevent the
malware from launching its payload. This effectively stops the malware in its
tracks and allows the EDR to generate an alert of the precise activity of the
malware. Malware obviously wants to avoid such detection while still using
the system calls necessary to achieve desired goals. To meet this goal, modern
malware deploys a number of evasion techniques aimed at disrupting an EDR’s
ability to monitor system calls.

Automatically detecting these evasion techniques through memory forensics
was the goal of our research. We will now begin our detailed discussion of each
EDR evasion technique as well as our developed detection algorithms. Each
section will include background on the technique, the operating system internals
necessary to understand and detect the technique, and a demonstration of our
new Volatility plugins’ detection capabilities.

3.2 Module Unhooking

3.2.1 Background

The first technique we will discuss is module unhooking, which also goes by
several other names including API unhooking and system call unhooking. The
goal of this technique is to evade EDR detection by unhooking the system calls
that an EDR previously hooked to monitor for malicious usage. For EDRs to hook
a system call, they must first locate it in a target process and then overwrite the
implementation (instructions) of the system call so that the EDR gains control
when the system call is made. This overwriting creates a discrepancy between
the instructions of the function on disk (the original ones) versus the EDR
written ones. By unhooking a function, malware resets (rewrites) a function’s
implementation to its original instructions, which nullifies the EDR’s visibility
into the function’s usage. This then allows the malware to use the unhooked APIs
without concern for being detected through userland system call monitoring.

3.2.2 Internals

Malware currently utilizes two techniques to unhook functions. For discussion
purposes, we will use ntdll.dll as our example DLL to unhook as it’s the main
handler of system calls and is often the main DLL targeted for unhooking by
malware. The first unhooking technique relies on all system call handling code
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for ntdll.dll residing in its .text section. This also implies that any/all EDR
hooks will be written inside of the .text section as well. To unhook all APIs
at once using this realization, malware will first obtain a copy of an unhooked
ntdll.dll, parse its metadata to locate the .text section, and then read it. This
clean copy of the section will then be used to rewrite the .text section of the
active ntdll.dll inside of the process, effectively overwriting every EDR hook at
once. A 2023 report from Recorded Future [6] details this technique as utilized
by the BlueBravo threat group:

Figure 3: BlueBravo’s Module Unhooking

The second form of this technique is to avoid overwriting the entire .text
section and to instead only overwrite either every system call handler or only the
handlers for the system calls needed by the malware. The end result is the same,
as the hooks placed by the EDR are overwritten with the unhooked (original)
versions of the system call handlers.

Interested readers can find more details about these techniques in [11, 12, 13].

3.2.3 New Detection Algorithm

To detect system call unhooking in a generic manner, we needed to develop new
memory forensics techniques. Related previous research, including efforts con-
ducted by members of our research team, provided new techniques for detecting
API hooking to detect malicious hooks. Unfortunately, this previous research
is not as useful in systems with EDRs present, since these systems will have
thousands of APIs hooked, leading to thousands of false positives per memory
sample unless allow lists are configured for each EDR and AV, which is not a
scalable solution [14, 15, 16].

Our new approach detects system call unhooking by relying on the fact that
malware will only unhook system calls in the small set of processes, generally
one or two, that the malware operates and targets. Furthermore, even if new
malware was released that attempted to unhook every process, modern versions
of Windows restrict which processes can have code injected through restrictions
on DLL loading, remote handle creation, and other code injection prerequisites.
EDR and AV software will also often harden itself against such attacks and
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malware often avoids the processes of such software through preconfigured allow
and deny lists to avoid suspicion.

3.2.4 Adding Volatility Support

Our new Volatility 3 plugin, windows.unhooked system calls, automates the de-
tection of unhooked modules by leveraging the discrepancy in instructions (code)
between hooked and unhooked ntdll.dll modules inside of processes. It operates
by locating and gathering the code of the most commonly unhooked system calls
and then grouping processes by their implementation of each system call. It
then reports the sets of processes that have distinct system call implementations.
In practice, this means that all of the hooked processes will be grouped together
while the one or two unhooked processes will be grouped.

To demonstrate our new detection algorithm using an easily reproducible
scenario, we designed an experiment using an open-source EDR-equivalent along
with an open-source malware toolkit that performs module unhooking. The
EDR-equivalent used was SylantStrike [17], which performs system call hooking
of NtProtectVirtualMemory to prevent memory regions from being temporarily
changed to read-write-execute (RWX) protections. Readers should note that
this changing of protections was listed as a prerequisite step in the previously
discussed BlueBravo malware. SylantStrike is explained in full detail in a series
of blog posts by its author [18].

For our experiment, we created a base Windows VM without any EDRs
present. This meant that each process had a clean copy of ntdll.dll present.
SylantStrike was then used to manually start two protected processes. The first
process created was an instance of Notepad, the second an instance of Wordpad,
and each process was verified to have the SylantStrike DLL loaded and the hook
present. The following figure shows the output of our new plugin for a memory
sample taken with SylvantStrike active:

Figure 4: SylantStrike’s Active in Both Processes

As shown, the plugin reports both the Notepad process with PID 5780 and
Wordpad process with PID 4068 as having distinct implementations since they
are now both hooked by Sylant Strike whereas the rest of the processes have
a clean ntdll.dll. Next, the open source R77 rootkit [19] was used to perform
module unhooking of the Notepad process. R77 performs full overwriting of the
.text section of ntdll.dll as part of its infection chain.

Our goal was to create a situation where the NtProtectVirtualMemory
function of the Wordpad process would have the SylantStrike hook present
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whereas the Notepad process would have its function reverted back to the version
on disk by R77. This mimics malware performing unhooking in real attacks.
The following figure shows the output of our plugin for a memory sample taken
after R77 was used to perform unhooking:

Figure 5: SylantStrike’s Only Active in wordpad

Wordpad is now the only process with SylantStrike active as Notepad had
its implementation reverted to the original version from ntdll.dll on disk. This
verifies that the new plugin can detect module unhooking as deployed by real
world malware. The other monitored functions are included in the plugin’s checks
and output as they are often valuable targets for more robust, enterprise-level
EDRs.

To illustrate the effects of this experiment more clearly, we used Volatility’s
dlldump plugin to extract the ntdll.dll executables from both the Notepad and
Wordpad processes after R77 was executed. The following figure shows the
Wordpad process and that it is still hooked by SylantStrike:

Figure 6: R77 Overwriting Notepad

The next figure shows the Notepad process, which has been reverted to the
original function implementation, resulting in it having the same code as the
rest of the system processes:
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Figure 7: R77 Reverting the Instructions

3.3 Suspended and Cloned Processes

3.3.1 Background

The previous section discussed how a clean copy of ntdll.dll is used to overwrite
all or part of the .text section of a hooked ntdll.dll. This discussion purposely
glossed over how a clean copy is obtained as, during the course of our research,
we discovered a new detection method related to how several malware samples
obtain a clean ntdll.dll. We also noted that this alternate method of obtaining a
clean copy of ntdll.dll partially overlapped with a novel technique presented at
BlackHat Europe 2022, known as Dirty Vanity, to evade EDRs [20]. Given the
abuse of overlapping APIs by both methods, we describe them here in the same
section.

The default method that malware uses to get a clean copy of ntdll.dll is to read
it from disk. Unfortunately for malware developers, some EDRs generate alerts
upon observing this behavior, as reading ntdll.dll from disk as a regular file is
not an operation expected of benign programs. To avoid detection, malware was
observed to create a suspended process, by setting the CREATE SUSPENDED
flag to CreateProcess, to then read the clean ntdll.dll from the new process
before EDRs have a chance to hook it.

The Dirty Vanity research effort used cloned processes to evade EDRs by
having the first set of APIs needed for code injection called in the parent process
and the final set called from the child. The Dirty Vanity presentation discussed

9



how EDRs were unable to follow this malicious API usage pattern from the
parent to the child. During our analysis, we observed that within the process
cloning phase, the child process is initially suspended, leading us to believe that
a generic detection of suspended processes (threads) could catch a variety of
EDR evasion techniques.

Readers may also recognize the use of suspended processes as a prerequisite for
many process hollowing techniques, and, as discussed shortly, our new algorithm
for detecting suspended processes detects several process hollowing variants
along with the use of process suspension for evading EDRs.

3.3.2 Internals

As documented in projects that abuse suspended processes to evade EDR, such
as PeRun-Farts [21] and Freeze [22], creating a process in a suspended state will
have the effect of the operating system creating a new process address space, but
only mapping in the application executable and ntdll.dll. While in its suspended
state, EDRs that have registered for process and thread creation notification
routines will not yet be informed of the new process. This means that the
half-created, suspended process holds a pristine copy of ntdll.dll in memory as
it exists on disk. The controlling malware process can then read the unhooked
.text section from its newly created child process to gather the data needed to
unhook its own process.

On Windows, each thread is represented by an ETHREAD structure and
has a KTHREAD structure embedded within it. When a process is created in
the suspended state, its initial thread is set to the state of suspended. Later, if
the process is resumed, this initial thread has its state changed to an operational
state. This prevents detecting process suspending based on a thread’s state
flag. Fortunately, during our analysis of thread creation on Windows, we noticed
several other side effects of creating a suspended process, including that the
SuspendCount member of KTHREAD is set to 1. We also noted that processes
started normally (not suspended) have their suspend count initialized to 0. The
use of ResumeThread to later make the thread execute will decrement this
counter back to zero, but reuse of the original thread is not required for the
process to function and does not occur in several of the malicious use cases we
studied.

3.3.3 New Detection Algorithm

Based on our observation that the SuspendCount member of a suspended process’
main thread will start as 1 instead of 0, we updated Volatility’s existing thrdscan
plugin to report the number of times each thread was suspended based on the
SuspendCount member as well as the backing library (DLL), if any, for these
threads’ starting execution address. We then ran the plugin across our previously
described data set of Windows memory samples.

Analysis of these results showed that, with the exception of threads inside of
browser processes pointing to WorkFoldersShell.dll, the only threads that had
a suspend count greater than 0 were malicious ones. These included threads
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created as part of EDR evasion as well as a variety of process hollowing techniques
present in our test bed of memory samples.

3.3.4 Adding Volatility Support

To automate the detection of processes created in a suspended state for ma-
licious purposes, we encapsulated our previously described knowledge into a
new Volatility 3 plugin, windows.suspended threads. This plugin enumerates
every active thread of every process and then checks its suspend count. If the
suspend count is greater than 0 and the hosting module of the thread is not
WorkFoldersShell.dll, then its full information is reported. The following show
this plugin detecting Dirty Vanity:

Figure 8: Detecting the Suspended Thread

The above shows the process with PID 6752 as having a previously suspended
thread, and, as shown in the following figure, examining the parent/child rela-
tionship of this process shows that it was created by the parent FakeExe.exe and
that it spawned the cmd.exe shellcode included with Dirty Vanity.

Figure 9: Related DirtyVanity Processes

While researching Dirty Vanity, we also came across an excellent writeup
on the effects on Dirty Vanity and a deep dive of the fork implementation of
Windows [23]. In this document, it states that a cloned process will have its initial
thread’s starting execution address pointing to the RtlpProcessReflectionStartup
symbol inside of ntdll.dll. After reading this, we created a new Volatility 3
plugin called windows.cloned processes that enumerates every thread of every
process and reports if its initial thread points to the RtlpProcessReflectionStartup
symbol. Running this plugin against the Dirty Vanity infected memory sample
reported the same thread as windows.suspended threads. This not only confirms
the previously cited research, but also allows us to catch malware that uses
either process suspending or process cloning for EDR evasion or other malicious
purposes, such as process hollowing.
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3.4 Direct System Calls

3.4.1 Background

The previously described evasion methods largely centered around module un-
hooking as this technique allows malware to make systems call without being
detected. While effective, unhooking is rather drastic, particularly when over-
writing all of the .text section, and, in edge cases, can lead to instability of the
system. EDRs also have the option to check for the erasure of their hooks to
immediately detect malicious activity inside of a particular process or set of
processes.

With this in mind, alternate bypass methods have been developed that still
provide for undetected system call usage, but that leave functions hooked by
EDRs in their hooked state (no overwriting). The first of these that we will
discuss is known as Direct System calls. With this method, malware obtains the
SSN of a desired system call and then directly invokes the syscall instruction
itself, avoiding the hooked system call handler inside of ntdll.dll. Since its
inception, this technique has been implemented in many open-source tools and
is still utilized by active APT groups, as documented in a recent CyCraft report
[24].

3.4.2 Internals

One of the earliest writings to document direct system calls was from Cornelis [25].
This blog post included the release of an open source project named Dumpert that
implemented direct system calls and provided detailed discussion of the technique.
This early project was not usable in practice though as it relied on hardcoded
system call numbers during compilation time. As mentioned previously, system
call entry numbers (SSNs) change during each build of Windows and have no
guaranteed order.

To work around this limitation, the Hell’s Gate [26] technique, which could
dynamically retrieve system call numbers, was developed. This technique allowed
direct system calls to be used on any Windows version, without the requirement
of knowing SSNs during compilation time. Hell’s Gate operates by parsing the
export table of ntdll.dll to dynamically find the Nt* function for a system call
of interest and then parses its instructions to find the corresponding SSN. The
previously discussed Figure 2 shows how the SSN is referenced inside of each
system call handler.

With the SSN available, the syscall instruction can be executed directly
once the parameters are in place. The following figure shows the HellsDescent
function of Hell’s Gate, which is used to invoke the system call instruction. Note
that the wSyscall variable holds the SSN of the system call to be invoked.
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Figure 10: The implementation of HellsDescent

While functional, the Hell’s Gate technique has a limitation in that it needs
a pristine (unhooked) copy of ntdll.dll to determine SSNs as otherwise it would
be analyzing the hooked copy in memory, which would be error-prone and non-
deterministic across EDR vendors. As discussed in previous sections, attempts
to access a pristine ntdll.dll can be caught by EDRs and/or our new memory
forensics techniques. This reality led to several twists on Hell’s Gate that allowed
for retrieving system call numbers without access to a clean DLL, such as
Halo’s Gate [27], Tartarus Gate [28], and system call table address sorting [29].
Automation of address sorting is also implemented within the SysWhispers2
project that allows for easier development of code using direct system calls [30].

3.4.3 New Detection Algorithm

Regardless of the technique used to acquire the SSN, all variations of the Direct
System Calls technique can be detected through the presence of the syscall
instruction or the older int 2E invocation outside of DLLs expected to host
system calls, which include ntdll.dll, wow64win.dll (Wow64 system call support),
and win32u.dll (Win32k/GUI system call support).

EDRs with in-kernel monitors have used this detection concept to detect
direct system calls as EDR monitors in the kernel can acquire the callstack (list
of functions and hosting module(s)) that led to a system call invocation. If the
callstack reveals that the syscall instruction (last one before transitioning to the
kernel) came from outside of a known system call module, then the EDR can
block the call and generate an alert. Unfortunately for EDRs, this detection
approach has largely been bypassed due to malware’s ability to manipulate the
callstack before the EDR can examine it [31, 32, 33, 34].

With memory forensics, we can avoid the callstack issue entirely by in-
stead searching for the instructions necessary to make system call invocations
throughout processes and then alerting on instructions outside of the known
modules.

3.4.4 Adding Volatility Support

To automate the detection of direct system calls, we developed the windows direct system calls
plugin. It operates by first searching for instances of the syscall; ret or int 0x2e
pattern inside of processes. For each instance, it uses Capstone to perform
automated static analysis of the (up to) ten instructions proceeding the pattern
and reports if it finds both a mov instruction that updates RAX/EAX as well
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as a mov that updates R10. As discussed previously, these registers must be set
correctly before a system call invocation.

While performing its analysis, the plugin takes anti-analysis precautions
based on observed behaviour of several techniques, such as the source code of
TarTarus Gate shown below:

Figure 11: Insertion of NOPs to Break Brittle Analysis

As can be seen, the syscall; ret pattern remains the same as the original
HellsGate, but nop instruction has been inserted in between the proceeding
ones as well as a two instruction process to copy RCX’s value into R10. These
changes would break naive approaches to detection, such as opcode scans with
brittle definitions, but do not defeat our automated static analysis.

The following figure shows our plugin’s detection of HellsDescent inside of a
memory sample infected with HellsGate:

Figure 12: Detecting HellsDescent

In this output, the HellsGate.exe process with PID 424 is detected due to
the automated static analysis of the instructions proceeding the system call
invocation. In verbose mode, the plugin also includes the disassembly of the
analyzed instructions as is visible in the figure.

3.5 Indirect System Calls

3.5.1 Background

As mentioned previously, EDRs initially defeated direct system calls by detecting
the invocation of system calls from modules outside of the normally expected
DLLs. As a method to bypass this detection, the indirect system calls technique

14



was invented. This bypass operates by finding the address of a syscall; ret pair
inside of ntdll.dll and then redirecting control flow, through a jmp instruction,
to the address of the system call instruction instead of the malware invoking the
system call instruction instruction itself. The use of indirect system calls makes
it to where a location inside of ntdll.dll is what will appear in the callstack as
the code responsible for the system call invocation, bypassing EDRs that only
verify the hosting module of the invocation.

3.5.2 Internals

The following figure shows the implementation of system calls inside of the
HellHall project [35]:

Figure 13: HellHall Implementation of Indirect System Calls

As shown, the use of jmp to the location of the system call instruction allows
HellHall to partially hide its origin as the code responsible for the system call
invocation. The code must still set EAX/RAX and R10 appropriately though
like with direct system calls.

3.5.3 Adding Volatility Support

To detect indirect system calls, we developed a new plugin windows.indirect system calls
that uses a modified approach to our detection of direct system calls. The plugin
starts by searching for all jmp [memory address]; ret instructions pairs, ignoring
nop instructions in between. For each found, it decodes the destination address
of the jump and then checks if the first instruction is syscall or int 0x2e. As
with direct system calls, it also parses the preceding instructions for RAX/EAX
and R10 being initialized.

The following figure shows this plugin detecting the HellHall implementation
of indirect system calls:

Figure 14: Detecting Indirect System Calls
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As with our plugin for detection of direct system calls, our new plugin for
detection of indirect system calls lists the process name, PID, and starting
address of the system call stub. In verbose mode, as shown, a disassembly is
also provided.

3.6 Exception Handlers and Hardware Breakpoints

3.6.1 Background

The final EDR bypass technique used in the wild is the abuse of exception
handlers combined with hardware breakpoints. The use of debug registers by
themselves to frustrate dynamic analysis is not new and was first published about
by halfdead in a 2008 release of Phrack Magazine [36]. Similarly, real world APT
and criminal groups have abused exception handlers to prevent analysis and gain
stealth as described by recent reports from Palo Alto, Mcafee, and tccontre in
reports on GuLoader and Gh0stRat [37, 38, 39].

A modern, interesting abuse of these features is using a combination of them
to bypass EDR checks. There are several variants of this bypass technique, but
the basic idea is that the the malware registers an exception handler and, in
many variants of the technique, then sets breakpoint(s) to control execution of
desired functions, without EDRs noticing the tampering. These malicious actions
have the effect of the malware-controlled exception handler being activated right
before the syscall instruction of the seemingly harmless system call is made,
which allows the malware several options to bypass EDR detection. The RedOps
blog has an excellent writeup on these abuses and we highly suggest that readers
study this blog post after reading our paper [40].

3.6.2 Internals

All variants of this technique that our team studied, including those implemented
in malware as well as open source toolkits, used custom exception handlers to
bypass EDR monitoring while several also combined abuse of debug registers.
Registering an exception handler is accomplished through the use of the Ad-
dVectoredExceptionHandler or SetUnhandledExceptionFilter functions. Once
registered, the malware’s handler will then be called whenever an exception is
generated in the program. To bypass EDRs, malware deploys one of several
observed techniques within its exception handler.

The first, as implemented in [41], encodes the desired system call number in
a register and then forces an exception to trigger. This then transfers control
to its exception handler, where it sets the RAX and R10 registers to the values
needed for a system call and the instruction pointer to the address of a syscall
instruction. It then lets the program continue execution, which will immediately
execute the system call outside the view of EDR systems monitoring system call
functions.

Another variation, as implemented in Mutation Gate [42], sets a breakpoint
on the syscall instruction of a function unlikely to be monitored (hooked)
by EDRs - NtDrawText in its current implementation. To make undetected
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system calls, MutationGate then calls NtDrawText as normal, which triggers the
breakpoint and redirects control flow to its malicious exception handler. Before
allowing execution to continue, MutationGate sets the RAX register to the SSN
of the system call it actually wants to make, such as NtProtectVirtualMemory,
overwriting the SSN of NtDrawText. This has the effect of the malicious system
call executing without having to interact with EDR hooks directly or from within
hooked functions.

In December 2023, Marcus Hutchins (MalwareTech) released his EDRception
project that used debug registers and a top level exception handler to bypass
EDR detection. In his implementation, the user of the tool can choose to use
exceptions or breakpoints to bypass EDR monitoring. In our testing, the debug
register method did not activate correctly, but the top level exception handler
did function as intended. This allowed us to detect the use of a malicious top
level handler.

The BlindSide project uses hardware breakpoints of a process it creates in a
debugged state to get access to a clean ntdll.dll [43]. It achieves this by setting a
hardware breakpoint on LdrLoadDLL within the debugged child process and then
detecting when ntdll.dll is first loaded. This reaches a similar goal of previously
described projects that access a clean ntdll.dll within a created child process
before an EDR can place its hooks.

Several projects leverage hardware breakpoints to implement patchless by-
passes and loading capabilities, such AMSI patching [44] or loading of the .NET
CLR into a target process [45]. These operate placing breakpoints on functions
to be hooked or called, such as AmsiScanBuffer to tamper with AMSI scanning.
With the breakpoints active, the malware can then tamper with the input pa-
rameters received and return values of calls to functions where breakpoints are
set.

3.6.3 Adding Volatility Support

The research in this section led to the development of three new Volatility 3
plugins. The first, windows.veh, enumerates the vectored exception handlers
(VEH) of each process and then performs automated static analysis of the
handlers to determine if they appear malicious. The algorithm to enumerate the
VEH of a process is explained in two great resources by NCC Group and Dimitri
Fourny [46, 47]. As noted in these references and observed in our testing, many
legitimate programs use VEH for a variety of purposes, so simply enumerating
handlers is not sufficient from an automated triage and analysis perspective. In
terms of detecting malicious VEH, there was a talk entirely focused on malicious
vectored exception handlers that was given during our research timeframe at
Black Hat MEA in late 2023. Studying this talk, the main detection focus was on
VEH that checked for breakpoint based exceptions. In our study of VEH handlers
across real world malware and open source projects, we observed many technique
variants that did not check for breakpoint exceptions and instead require more
thorough static analysis to detect. This led to our detection algorithm, which
checks for any of the following registers being written to within the exception’s
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context structure:

• R/EAX (syscall parameter, faking return function value)

• R10 (syscall parameter)

• RSP/stack pointer (several evasion purposes)

• RIP/instruction pointer (several evasion purposes)

• RCX (address of start address to thread creation)

The following figure shows detection of MutationGate’s VEH within our new
plugin:

Figure 15: Detecting Malicious VEH

The second plugin developed was windows.ueh that enumerates the unhandled
exception handler for a process. These exception handlers are called whenever
no other exception handler in a process catches an exception, assuming the
process is not being debugged [48]. Calling this function sets the BasepCur-
rentTopLevelFilter global variable inside of the process. Our new plugin locates
BasepCurrentTopLevelFilter and then performs the same analysis on the handler
as our new VEH plugin. The following figure shows detection of EDRception
with our new plugin:

Figure 16: Detecting Malicious UEH

The last plugin developed was windows.debug registers, which enumerates
every thread of every process and then examines if the debug registers are
set. For reference, debug registers 0-3 (Dr0-Dr3) hold the target addresses of
breakpoints (where they are set), debug register 7 (Dr7) holds information about
which breakpoints are active, and debug register 6 (Dr6) is set by the hardware
when breakpoints are triggered. Exception handlers examine Dr6 to determine
the reason for the exception. Our plugin looks for processes where Dr7 is set
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and then, for Dr0-Dr3, it extracts the breakpoint address, finds the memory
range hosting the breakpoint, and attempts to resolve any symbol names at the
address.

Figure 17: Detecting Patchless Bypasses

The above figure shows our new plugin detecting the AMSI patchless bypass
technique, including revealing that the breakpoint is set on AmsiScanBuffer.
This function is the target of the bypass and a popular function for manipulation
by malware. Note that the figure only includes the Dr0 related information to
make the image fit as well as that the particular bypass technique implementation
only uses Dr0. The full plugin output includes the same information for Dr0-Dr3.

4 Conclusions

In this paper, we have documented our extensive research to develop novel
memory forensics techniques capable of detecting all EDR process monitoring
bypass techniques used in the wild and by popular open source toolkits. The
use of these techniques allow malware to operate undetected and to perform a
wide variety of desired activity, such as lateral movement, code injection, and
credential theft. All of our developed techniques were created as plugins to
the open source Volatility 3 project and will be release during the conference,
allowing incident response handlers and threat hunters to immediately utilize
the capabilities in real investigations.
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